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ANALYTICAL TREATMENT OF TWO-DIMENSIONAL
SUPERSONIC FLOW

II. FLOW WITH WEAK SHOCKS

By J. J. MAHONY*
Department of Mathematics, University of Manchester
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A scheme of approximate solution is presented for the treatment of shock waves in the steady, plane
flow of a perfect gas. It is based on the neglect of any entropy variations produced by the shocks
and hence is applicable only when the shocks are weak. The method provides an extension of
Friedrichs’s (1948) results for simple waves to wave-interaction regions.

By an examination of the solution of the continuous-flow equations in the neighbourhood of a
known shock wave it is shown how the downstream flow may be calculated without reference to the
particular shock shape (§2). There are certain cases in which this approach fails and they are
discussed by means of a typical example in §3:3. Once the downstream flow has been calculated,
it is possible to set up general equations for the determination of the shock (§2). Examples of the
solution of these equations for typical problems are given in §3.

In §4 there is a brief discussion of the validity of using homentropic theory and estimates of the
errors involved in the solution process are obtained.
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1. INTRODUCTION

/ |\
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The methods outlined in part I (Mahony & Meyer 1955) provide a means of obtaining

2 — the solution of a completely supersonic, irrotational flow field in which there are no shock
S — waves. These methods are here extended to permit an approximate treatment of flows in
= which weak shocks occur. The flow is then no longer homentropic, and the full problem is
= O one of great complexity for which no analytical, non-degenerate solution is known. How-
E 8 ever, when the shock waves are sufficiently weak, the changes in entropy are extremely

small, and it appears plausible, as a first approximation, to treat the flow as homentropic.
On this basis, Friedrichs (1948) and Pillow (1949) have solved the problem of the formation
and decay of shock waves in a simple wave.

A similar approach is here used to treat general wave-interaction regions in which weak
shocks are present. A qualitative examination of the nature of the flow in the neighbourhood
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500 J. J. MAHONY ON THE

of a typical shock shows that, once the homentropic approximation is adopted, the boundary
conditions determine a continuous solution free from shocks. The solution is not realistic
in that it cannot represent a flow, for it contains regions in which three different velocity
vectors are predicted for any one point in the flow plane; but it is mathematically complete
and consistent. In the plane of the characteristic invariants, this multivalued nature of the
solution does not obtrude and the shock wave appears as a boundary which excludes the
unrealistic portion of the continuous solution from the actual flow.

This procedure is reversed in § 3, when a shock is introduced into a known continuous
solution, which is not realistic, so that the portion of the solution retained provides a com-
plete, one-valued and physically reasonable flow. This total solution, including a deter-
minate shock, satisfies both the equations of continuous flow and the shock conditions
provided that terms of the order of the entropy variations are neglected in all equations. This
introduction of a shock wave, whenever the continuous solution breaks down, would appear
to be justified by the work of Johannesen (1952), where it is found to yield the correct
description of the flow.

While this approach gives a clear idea of the basic method, it is by no means always
sufficient for the satisfactory solution of the problem. This is illustrated by the example
discussed in § 3-3, in which the shock meets a jet boundary. In this case the calculation of
the downstream flow, by using the focusing equations to form an extended solution, is
found to give a qualitatively wrong flow. As a result, the problem needs to be treated in
two stages. First, an extended flow field is calculated in which neither the shock nor the
boundary occurs, but from which both can be determined as far as their point of interaction.
Thereafter, a fresh formulation of the problem is required for the calculation of the sub-
sequent flow.

It is not immediately clear that the basic idea of the homentropic approximation is
always adequate. Moreover, it has not yet proved possible to compare a solution of the
truncated equations with the corresponding solution of the full equations to establish
that the two differ only by terms of the same order as the entropy variations. The problem
has been investigated by Lighthill (1950) for a specific class of simple wave flows for which
the Friedrichs theory seemed most open to doubt. His work, based on a plausible assumption
about the flow behind the shock, consists of a detailed examination of the flow, and in par-
ticular the energy balance, and yields a consistent and reasonable picture of the rotational
flow field. The investigation suggests strongly that the errors, involved in using the homen-
tropic theory to determine the shock, are in fact of the same order as the entropy variations,
but that there is a greater error involved in the determination of the structure of the down-
stream flow. As a result, further shocks cannot be determined tothe same accuracy as the first.

The question is considered further in § 4 below, where the general equations governing
the flow downstream of a curved shock are obtained in a form which permits easy com-
parison with a homentropic solution obtained by the methods of part I. For the particular
class of problems considered, the leading terms of a solution of the general equations are
found by seeking one which differs but little from the homentropic solution. If another
solution to the problem exists, it must differ greatly from that obtained using the homentropic
approximation. Thus, if the latter provides an approximation at all, an estimate of the
errors involved can be obtained by a direct comparison of the present solutions. On this
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basis it can be shown that the method of approximation introduces errors of third order
in the shock strength into the determination of the velocity field but of first order into the
calculation of the velocity gradients. This agrees with the results obtained by Lighthill for
a different problem by a different method and thus supplies further confirmation of the
limits of validity of the homentropic theory. However, for the problem here considered,
the shock shape is obtained with a third-order error only if the homentropic approximation
is applied by a method, such as is described in § 2, in which larger errors cancel each other.

2. STUDY OF A SHOCK IN THE HODOGRAPH PLANE

Within the framework of a theory which neglects any small variations of entropy, the
use of the characteristic invariants, « and f, as independent variables should simplify the
analysis as it has done in part I. Moreover, if a unity of treatment is retained for continuous
and discontinuous flows the formulation of a problem does not have to be changed if a
satisfactory continuous flow is found not to exist. Thus it is first necessary to express the
Rankine-Hugoniot shock-jump conditions in a form suited to the hodograph plane* rather
than in the more usual forms which are used in the flow plane.

As this treatment is based upon the neglect of the entropy variations produced by any
shock which may occur, it is satisfactory if any other equally small quantities are also
neglected and then the appropriate form of the shock relations can be obtained as follows.
The changes in the flow variables across a weak shock differ from those across a simple
wave, producing the same stream deflexion from the same initial state, by terms which are
of third order in the shock strength (Courant & Friedrichs 1948). Let the shock strength §
be defined as the stream deflexion 5= 0,0, (1)

where henceforth the suffixes 1 and 2 denote respectively the conditions on the upstream
and downstream sides of the shock. Since a simple wave is characterized by having one of
the characteristic invariants constant across it, either (¢,—a,) or (f,—f,) must be O(8%)
which is also the order of the entropy change across the shock, and it follows from (I, 3)}
that the difference (¢,—#,) must be negative. Then from (I, 1, 2) and (1) it follows that if § > 0,

ay—ay = 0(83), fy—p =204+0(03), t,—t = “3‘{‘0(33),1

2
and if $<0, ay—a, = 20+0(3%), fy—py = 0(0%), ty—t,=8+0(8%). | @)

It is only necessary to consider one of these cases because the treatment of the other is closely
analogous, and so it will be assumed that § is positive. The other expression for the change
in a flow variable, which is required for later work, is the formula (Howarth 1953)

to—ty = (2N, —1) 8-+2N,(2N,— 1) tan s, 82+ 0(%), (3)
1 degy _y+1_
where N= —2~( »—az) = sect (4)

* I.e. the (a, #)-plane. Note that, provided only that the flow is homenergic, the variables & and £ are
defined as functions of § and ¢ and hence the (a, £)-plane is obtained by a known fixed transformation of
the conventional hodograph plane. '

1 References given in the form (I, n) refer to part I, equation number z.

‘ 62-2
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for the change in Mach angle. The specification of the shock in the flow plane is completed
by the relation*

W= p; +N;0+3iNicoty[1+3tanu, —8sinu/(y+1)] 024 0(83), (5)

which determines the acute angle, w, which the shock makes with the upstream flow direction.

These relations will now be used to discuss the correspondence between the flow and
hodograph planes in the neighbourhood of a shock wave. A simple case is treated to establish
the general features of the correspondence, but it is easy to extend the treatment to more
complicated problems. The example chosen is that of a known flow with a shock wave
which starts with zero strength at some interior point of the flow field. It is assumed that
there are no other shock waves or singularities of the wave-front or branch-line type in the
neighbourhood of the shock. For definiteness, it is also assumed that £ is increasing in the
flow direction and that « is increasing in the direction of growth of the shock.

minus Mach lines ¥
(27 oy o
I ]
| I
I I
| |
D } F c
plus | '
Mach (I g
lines Ry e e
|
|
I
IR U A S ———— F
0
!
B
|
N I
N I P
A B
Ficure la. Flow plane. Ficure 16. Hodograph plane.

Then to each point on the shock in the flow plane there corresponds two points Py, (a;, 5,),
and P,, (¢, f,), in the hodograph plane. There is one exception to this; the birth point of the
shock in the flow plane has only one corresponding point (a,, ;) in the hodograph plane.
Since, in the flow plane, the shock approximately bisects the angle between the upstream
and downstream minus Mach lines, the above assumptions imply that

%5 “2> %ps

/?1 <ﬂo</92,

and hence the correspondence is as depicted in figure 14, 5. Note that region III, which is
enclosed by the shock wave in the hodograph plane, corresponds to no part of the actual
flow. '

* This can be deduced by series substitution in the formula relating @ and g, given in Howarth (1953).
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The focusing equations (I, 9, 10) may be used to continue the known solutions in regions
I and IT into region ITI. For, the sides AB, AD and CD of the characteristic rectangle ABCD
are completely in the known flow, and hence 4, is known on 4B and CD while %, is known
on AD. These values of the characteristic length parameters on 4B and AE uniquely deter-
mine a continuous flow solution in the rectangle ABFE and the values on CD and DE
similarly determine a solution in CDEF. From the continuity properties of the characteristic
length parameters established by Meyer (1949) and the assumed continuity in regions I
and II, it follows that these two solutions are continuous across EOF. By inverting the
procedure in rectangle CDEF and using the data on DE and that calculated on EOF from
the rectangle ABFE, it is possible to determine the solution in CDEF. Thus the solution in
region II, which is the actual downstream flow, may be calculated from the data on AB
and 4D by ignoring the existence of the shock and using the uniquely determined extended
continuous solution. ' ‘ .

Itis of interest to examine the properties of the extended continuous solution in region I11I.
For convenience, all quantities which are 0(8?%) will be placed equal to zero in this paragraph,
but the results obtained here may be confirmed by the general theory developed later in
this section. The points P, and P, lie on the same plus Mach line and the length P, P, is

B2 '
thus f hgdf. Furthermore, this length must be zero for P; and P, correspond to the same
A

point in the flow plane. By the initial assumptions %, is continuous in regions I and II and
hence is continuous in region IIL,* so that /; must vanish somewhere on each plus Mach
line in region ITI. Moreover, as regions I and II in the hodograph plane correspond to a
flow free of mapping singularities, 4, is of the same sign throughout these regions and in
particular at P; and P,. Therefore, 4, must vanish an even number of times on the segment
of each plus Mach line within region III, or, what is equivalent, each plus Mach line
encounters an even number of limit lines of the other family. At the point O, in particular,
oh
hy = Tﬁ{} =0,

and the first non-vanishing derivative of 4, with respect to £ is of even order.

The transformation relations (I, 5, 6) may be used to define a correspondence between
region III and a set of points in the flow plane, or, rather, an extension of this plane. From
the behaviour of the solution in the hodograph plane and the properties of limit lines
(Meyer 1949), it can be shown that the extended flow plane consists of a folded surface in
the neighbourhood of 0. The lines of folding of the surface correspond to the limit lines which
are cusped at O, while the actual flow is carried on the two extreme sheets with the shock
appearing as a cut from one extreme sheet to the other. ;

- The extension of the solution of the focusing equations in the hodograph plane, corre-
sponding to an actual flow with a shock wave, has thus been shown to possess the typical
features associated with the failure of a continuous flow solution. This result provides
confirmatory justification for the idea, used by many authors in simple-wave theories, of
eliminating limit lines by introducing shock waves. If the use of a homentropic theory is

* 'This follows from lemma I of Meyer (1949) or from the continuity properties of solutions of equations
(1, 14, 15). '
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justified, the above considerations show that such a shock must start from the cusp of the
limit line. Furthermore, the downstream flow will remain unaltered by the introduction
of a shock wave.

There now remains only the question of the actual determination of the shock shape.
The information about the shock, which has not yet been used, is the fact that the loci of
the points P; and P, map on to a single line, in the flow plane whose slope is a given function
of the shock strength. That their map is a single line implies by (I, 5, 6) that, for each «,

0 = x(ay, B) — (@1, B,) = f:[hﬂ cos () Lama, B+ | Thy 08 (6.1,

and 0= y(ef)—y(ers ) = [ Thpsin (0o, 0 [ Thusin (0]

If the first of these equations is multiplied by sin (6,+#,) and the second by cos (6,+x,),
the difference of the resulting equations yields

B2 . o .
fﬁ [ysins (-4 )L, A = — [ Thysin (00 -+ g1 -, ot
= O(h,09%), (6)

since both [0,—0]5_s, and [uy—pu]s-s, are O(ay—a) and (2,—a,;) is O(d%). The condition
that this single line in the flow plane makes an angle w with the upstream flow direction may
be shown, by the help of (I, 5, 6), to imply that the slope of the upstream branch of the shock
in the hodograph plane is given by '

dfy __ hyfa, ) sin (0—p) -

dey hﬂ(ab By sin (0+p,) ‘
A similar formula could be found for the downstream branch, but this is implied by equations
(6) and (7). Not only is the present form convenient but also later work, on the effect of
the entropy variations, shows that it is necessary if accuracy is not to be lost in certain cases.
If appropriate use is made of the shock-jump conditions, equations (6) and (7) serve to
determine any two ofa;, £, and d as functions of the third. Thus the shock may be determined
in the hodograph plane and this may be transformed to determine the shock in the flow
plane.

3. EXAMPLES OF THE SOLUTION METHOD

The form of the solution of equations (6) and (7) for the determination of the shock shape
is governed by the properties of the extended solution of the focusing equations. Thus
different problems require somewhat different treatment, depending upon the nature of
the mapping singularity with which the shock is associated, the appropriate form for the
early approximations for the continuous solution, and the number and type of singularities,
such as wave fronts or branch lines, which occur in the immediate neighbourhood of the
shock. The examples chosen illustrate the method appropriate to each of the three possible
types of singularity from which a shock may start. In the first example (§3-1) the shock
starts from two edges of regression; in the second (§ 3-2) it starts from the cusp of a limit line,
while in the third (§ 3-3) the birth-point of the shock is the junction of an edge of regression
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and a limit line. The effect of the method by which the continuous solution has been
obtained is illustrated by the first two examples. In § 3-1 the continuous solution has been
obtained by the ‘inconsistent rule’ while in § 3-2 it has been obtained by the method of
power-series expansions. The last example illustrates the procedure when a further singu-
larity complicates the calculation of the shock.

3:1. Thin aerofoil in a non-uniform stream

The first problem considered is that of calculating the shock attached to the leading edge
of a thin sharp-nosed aerofoil in a slowly diverging nozzle. It will be assumed that the small
stream deflexions produced by the nozzle in the absence of the aerofoil, and vice versa, are of
the same order of magnitude. Attention will be confined to the flow over the upper surface

s

B2,

* D, ! F,
~ e
\ / , / Po
N / / /
\ / ’ /
N ’ Ve /
AN Ve /7
N /o, ’
\ V4 ’
Y / 7 ’
\\/\1/
B E
FiGUure 24. Flow plane. Ficure 2b. Hodograph plane.

of the aerofoil and then the correspondence is as represented diagrammatically in figure
2 a, b. The solutions of the focusing equations in the various regions of the hodograph plane
may then be obtained by applying the ‘inconsistent rule’ of part I. If the aerofoil chord is
taken as the unit of length, the characteristic length parameters are O(d;!), where d, is the
small angle between the upper surface of the aerofoil and the incident stream at the leading
edge. Thus, it can be shown that, in the region bounded by the plus Mach line 4B, the minus
Mach line BC and the streamline AC (region I),

V= Til8)~ [*my Uy(e) da-t 03, |
| . ®)
and U= Ui+ [7_mTi(8) dp-+ 0000,

where (a,, #,) is the upstream point B in the hodograph plane, U,(«) and ¥,(f) are functions
determined by the nozzle geometry alone, and f = ®(«) is the equation, in the hodograph
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plane, of the wall streamline. In the region between the two minus Mach lines BC and DB’
and the plus Mach line BB’ (region II) the solution is

U= Uy(a)+ [ mabig) dp+0(8),
o(a (9)
and V——["my Uyle) da+0(8),

since the segment BB’ maps on to the one point B in the flow plane. Finally, in the region
bounded by the minus Machlines B’D and EF and the aerofoil B'E ( region III), the solution is

U= U+ [ mobp)dp- [ mobi(f) dp-00y
(10

and | V="V(p) ——Lp(ﬁ)mo Uy(a) +0(8y),

where V{(f) is a determinable function of the aerofoil and nozzle shapes and « = ¥(f) is
the map of the aerofoil in the hodograph plane.

As consideration is being limited to the case where only one shock wave occurs, Uda
and Vdf are positive definite in regions I and III, equation (9) implies that Uda is positive
in region II while Vis negative there. Since Vis also negative in regions I and III, the map-
ping on to the flow plane will be multivalued if, and only if, £ is increasing along a plus Mach
line in region IT; that is, if §, is positive. Ifd,is negative the solution of the focusing equations
provides the generalization of a Prandtl-Meyer fan for non-uniform flow. Thus only the
case d, positive will be considered here.

The first step in the determination of the shock wave is the estimation of the orders of
magnitude of the quantities involved. Thus the expressions (8), (9) and (10) for the character-
istic length parameters are substituted into equations (6) and (7) for the shock shape and
only the leading terms are retained. Then the equations

dg, 0(061) l
PR ATAR (11)
and f V() df—2my s, f Uy(o) da+ f ol dﬁ’~0’

are obtained. From the first of these equations it follows that (f,—/,) is O(d%), and this in
conjunction with the second equation implies (f,—g,—2d,) is O(d3) and hence §—4, is
0(03) from equation (2). Having established these results, it is possible to rewrite equations
(11) in the form g, Uy ()

a&’;:”‘mo Vi(f ){1+0(3)}

and f 8 dp+ [ i) dﬁ=2m030LoUo(a) dafl +0(8,)} -
If the notation 5, Y(f,) = f : g ap |

O RAOL (13)
and X(a,) = f :Uo(é) da,
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where X, Y and Z all range from zero to order unity, is introduced, equations (12) may be
written in the simplified form dy

dx =~ mo{1+0(dy)}
and , Y+Z = 2my X {1+ 0(d,)}.

Thus the solution of equations (12) is -
Y =myX{1+0(8,)} = Z,

or V(,b’) dp = my5, U( ) do{1 + O ()} f A dﬂ,}

which is a pair of equations determmlng f, and ,6’2, and hence the shock strength 4, as
functions of «;.

These equations suffice for numerical purposes, but it is possible to obtain an explicit
analytical solution under fairly general conditions. It may be recalled from the discussion
of the basis of the ‘inconsistent rule’ of part I, that the boundary conditions, which in
essence determine the functions U,, ¥, and V] are applied in the form x = X(6/d,). For most
aerofoils and nozzles the derivatives of 6/0, with respect to x will be of unit magnitude at
most and then thenthorder derivatives of U, ¥, and ¥; are O (857 1). If ¥, and V; are expanded
in Taylorseries about f, and (f§,4-2,) respectively, and use is made of the orders of magnitude
of (B,—p,) and (By—f,—26,), the two extreme integrals in equations (14) can be shown to
be approximated by the leading terms of their series expansions. Thus the shock shape,
in the hodograph plane, is given by

(14)

Po+250

po—br =258 [ Unfa) daft -+ 0(80),

my 0,

(o200 = o0 [“U0) s+ 0(8), )
and I=o= oy g amy ], Do) 1000}

The error terms in the solution are of the same order as the entropy terms which have
already been neglected and hence equations (14) or (15) provide the solution sought.
In deriving this result only the leading terms of the expressions (8) and (10) have been used
and this might be taken to imply that there is no need to continue the solution of the focusing
equations through region II. This is indeed so for the example treated, but it is not difficult
to see that, by suitable choice of the orders and form of U, ¥V, and V], one could construct
a reasonable example in which this continuation would be essential. Thus the extra terms
have been included in the present simple example to indicate the way to extend the method
in more complicated problems.

3:2. Shock starting from the cusp of a limit line

In this example it will be assumed that a solution of the focusing equations has been
obtained by the method of power-series expansions, and this solution possesses a cusped limit
line which is an envelope of minus Mach lines. If («, £,) is the point in the hodograph plane
at which this limit line hy(a, ) = 0

63 Y Vor. 248. A.
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is cusped, it follows that
P “03/5)0) —‘I: :L p

and hence the shape of the limit line in the hodograph plane is approximately parabolic.
Since the branches of the shock wave must lie outside this limit line, it follows that (o; —a,)
is O{(fy—f,)?%} and (ay—ay) is O{(fy—f,)?} at most. If this limit line is thus to be replaced
by a shock, the shock wave must produce a positive deflexion (see equation (2)) and hence
(fs—p,) must be positive. However, the continuous solution already defines a stream
direction in the hodograph plane and this may conflict with the requirement that £, is
greater than ;. By an examination of the properties of this anomalous case in the flow plane,
it can be shown that it arises from flow over a boundary on a folded surface and hence cannot
correspond to a real flow and so will not be considered here. Thus the problem will be
restricted to the case where /£ is increasing in the direction of the stream which implies that,
on both sides of the shock, /; is positive.

If the problem is such as to permit the use of the double power series method to obtain
the early approximations to the continuous solution, the characteristic length parameters
may be expanded in Taylor series using equations (I, 9, 10). The shock must lie outside
the limit line in the hodograph plane and so it can be shown that

Py, = Iy (5 flo) {1 — Ny cot 240 (f—ffg) + O(05) } (16)
and  hy = h, (g, Bo) {a(B—fo)> —mo(a—ag) +b(B—Fo)* +ec(a—ap) (F—Fo) +0(8%)},  (17)
where a= F'; f;;f / h“:l , >0,

710%
I aﬁf / “] p
| 2 1dm
and c=|m cos2,u+2dt o pe

are all known constants in a specific problem. Equations (6) and (7) may be solved by
substituting in them equations (16) and (17) and the trial expansions

ay—ag = Ao(Br—fo)? + 4, (f1—Fo)*+ 0(3*) (18)
and 8 = Dy(fy—Fo) +D\(fr—F0)*+0(%). (19)
The largest order terms yield the two equations
4y(2Dy—1) = —a
and myA, = a(1+2D,+4%D3),
whence, by elimination of 4,, the cubic
DE(Dy+1) =0

may be obtained. The three real roots of this equation correspond to cuts made from any
sheet of the folded flow plane to any other. The required solution is the one corresponding
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to a cut between the two extreme sheets, and hence the remaining coeflicients in the trial
substitutions may then be shown to be ’

| 4y = af(3my),
Dy = —s{c/my+3bja+2(Ny—1) cot 24,
— 2] (2, 1) tan sy~ cotfo—J cot o1 +3 tan’ py—Ssin’ (7 + 1)1},

and 4, —ca/(3m§)+b/m0+ £a[(2N,—1) tan y,— cot 4,
— } cotpy{L+3 tan® sy— 8 sin? i (y + 1)}].

At this stage it is as well to note that there are certain inconsistencies in the method of
approximation used in this example. Although /4 has been calculated by neglecting the
third-order entropy terms, it has been necessary to retain the third-order terms in 4 itself
in order to determine the second-order terms in the shock strength. Furthermore, while
the third-order terms are determined by the present solution for , they are not determined
for a,. Thus if equation (7) was replaced by an equivalent equation for df,/de, the position
would be reversed. This question is treated in detail in § 4, where it is shown that the above
procedure does in fact lead to the correct solution but the other possible methods do not.

3:3. First shock in an expanding supersonic jet

In the two previous examples the use of the complete solution of the focusing equations
to obtain the downstream flow has proved quite satisfactory. However, its indiscriminate
use may sometimes lead to a qualitatively wrong description of the flow. As an illustration
the determination of the shock wave occurring near the end of the first period of a jet is
now discussed. In §§3-1-1 and 3-1-2 of part I, it was shown that, for sufficiently small dy,*
a limit line occurs in the simple wave region X1, and this limit line starts from the leading
plus Mach line provided the initial Mach number exceeds a certain value. Attention is
confined to this case, as the geometry is then a little less complicated.

The basic problem is that of calculating the shock originating from the junction of a
limit line and an edge of regression. But it is complicated by the awkward nature of the
correspondence between the flow and hodograph planes, and so it is instructive to examine
the correspondence in detail. In the folded flow plane (figure 3a) the upstream sheet
contains a uniform flow bounded by the extreme streamline CD and the wave front ABC
of which the segment BC is an edge of regression. The middle sheet is bounded by this edge
of regression, the limit line BE and the streamline CE, while the downstream sheet is
bounded by the streamline EF, the limit line BE and the wave front 4B. The shock appears
as a cut BG joining the two extreme sheets. The mapping into the hodograph plane is
degenerate due to the fact that portions of the flow are uniform or simple waves. Where
the flow is of simple wave nature it is convenient to work in terms of s and £ (part I, § 3-1-1)
instead of « and f. Thus two separate correspondences must be considered, in the first of
which the development of the shock in the simple wave is treated. In the (s,/)-plane
(figure 3b) the whole of the upstream sheet of the flow plane is mapped on to the line

* Here, in contrast to part I, §, is used for the stream deflexion produced at the lip of the jet to avoid
confusion with the shock strength 8
63-2
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B = f,—20,, but the remainder of the mapping of the simple wave into the characteristic
plane is regular.

Quite analogously to the derivation of equation (7) it can be shown that the equation
governing the growth of the shock is

Ay _ _ i) sin (0—py—8)
ds ~ () Vsin (054, —9)
Thus from the value of 1%, (I, 67), it can be shown that the equation to the shock is
§ = L—dgfydofmy -+ 16,0/ (3my) +O(83).

=
So——————""""""A
l\

|

|

/' Po

5280

Ficure 3a. Flow plane.

B5280)

Ficure 3¢. Hodograph plane.

The point G is the point of intersection of this line with the streamline
dg — Jluy)
ds = flu) 7
through D. Hence its co-ordinates may be shown to be
F(G) = Fo—49+ 0(5)
and $(G) = 1—39, 53+ 0(39)-
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The second part of the problem, involving the interaction of the shock and the simple
wave with the constant-pressure streamline, may now be treated. Since this portion of the
flow will be a region of interaction of simple waves, it is convenient to return to the use of
« and £ as independent variables. The map of the flow in the hodograph plane is represented
diagrammatically in figure 3¢. Thus the new formulation of the boundary conditions is

(1) on the constant pressure streamline, ¢ —f = a;—f,+ 20, '

U=V, (20)
(2) on the plus Mach line through G, & = «,,
V=0 (f,—28,<f<p(G))), (21)
V="a(B,5(G)) (B(Ge) <F<Po)- (22)

Note that there are two other seemingly possible formulations, but these will be shown to
be incorrect. The first possibility is to apply the condition of constant pressure on the portion
CEG, of the streamline CF. As there is a variation in £ of order J, along this segment there
would be a corresponding variation of « producing a wave downstream before the shock
meets the boundary. In this case it would be impossible to satisfy the shock jump condition
that (a,—a,) is 0(4%), since the upstream flow is uniform. The second incorrect procedure is
to apply the value of V%, derived from the extended continuous solution in place of equation
(21). If this is done it is easy to show that the solution of the focusing equations and the
amended boundary conditions contains a limit line U = 0 which would give rise to an
‘expansion shock’, and so this formulation must also be rejected.

The formulation described above leads to no such difficulties and yields a physically
consistent picture of the flow. The boundary conditions (20), (21) and (22) determine
a unique solution of the focusing equations in the triangle G, KL, and the solution in the
sub-triangle bounded by & = &, # = f(G,) and the constant-pressure streamline is obviously
U=V=0. Thus equation (21) may be replaced by

U=0 on p=p(Gy) (w<sa<ay—Ff+20,+p(Gy)).
It is easy to show that this solution yields a correspondence with the flow plane, free of

singularities. Moreover, the reflexion of the shock from the constant-pressure streamline
is a centred expansion wave and hence is in accord with physical experience.

4. THE EFFECT OF THE ENTROPY VARIATIONS

As has already been noted in § 3-2 there is considerable doubt as to the accuracy of the
homentropic theory applied to the formation of a shock from the cusp of a limit line. More-
over, this case is not covered by Lighthill’s investigation (1950), and so this case will be
discussed here by a comparison of the homentropic solution with the leading terms of a
solution of the full equations. The equations governing a rotational flow field will be
formulated in such a way as to facilitate this comparison. Thus, although they are no longer
characteristic invariants, « and § will be retained as independent variables, while a set of
four correction functions X,,, X, ¥, and Y, will be used as the dependent variables. They
are defined by the mapping relations '

dx = (h,+X,) cos (0+p) da+ (hs+ Xj) cos (0—p) df (23)

and dy = (h,+X,+7Y,) sin (6 +u) da+-(hs+ Xy +Y) sin (0 —p) df (24)
63-3
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between the hodograph and flow planes. If the flow were homentropic, but not necessarily
equal to the approximate solution, both ¥, and ¥, would vanish identically. Thus, although
the effects are interrelated, X, and X, » may be interpreted as being rough measures of the
effect of applying approximate boundary conditions on the shock, while ¥, and Y; measure
the distortion of the flow due to entropy gradients.

Under suitable assumptions as to the existence and continuity of derivatives,

(%{Xa cos (0+u)} = 5% {Xjcos (¢ —ﬂ)}

and S+ Esin (040} = 7 {(X,+ ;) sin (91,

since, from (I, 5, 6), %, and A, satisty similar equations. Thus, by a process analogous to the
derivation of the focusing equations, it can be shown that

a_‘Yzc_;_m(Xacos 2u— Xj) = cosec 2u cos (0 —u r;?%{yﬁsin ((9-——/&)}——5%{1@ sin (6’—}—/4)}] (25)

I*#

and

~—r

X 0 . d
1 — = = —_ N = i
o +m(X,— X cos 2u) = cosec 2u cos (0 -+ ) 7 {Yysin (0—p)} B,b’{y:" sin (0 +,u)}] . (26)

These equations are purely the result of the formal definitions of the correction functions
and are valid regardless of whether or not the solution represents a flow. It will represent
a flow if the correspondence satisfies the equations of motion

da+sin2xd® =0 on g%:tan(ﬁm,u),

df—sin2ud® =0 on d—y—tan(ﬁJr,u)

dx
. dy
and d®=0 on =*=tand,
dx
where O =8/{2y(y—1)C,},

and 'is the specific entropy and C, the specific heat at constant volume of the gas. In terms
of « and f as independent variables these equations may be written in the form

14-sin 2}{[%;—1; +tan¢1%'—(g =0, (27)
1 —sin 2/;[%?0& ¢2—[—%%) =0, (28)
D i)
S Htands 30 =0, (29)

where ¢,, ¢, and g, are the local slopes in the hodograph plane of the plus Mach line, the
minus Mach line and the streamline. These three equations for d®/da and d®/df are con-

sistent if, and only if 1 —tang, cotg, = tang, —tang,. (30)
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From equations (23), (24) and (30) and the definitions of ¢,, ¢, and g, it follows that
2(h,+X,) (hs+Xy) sin 2u{Y cosec 2(0 +u) + ¥, cosec 2(0 — )}
= (h,+X,) Yjsin (0 —u) cosec (0-+u) — (hg+X;) ¥2sin (6 +p) cosec (0 —u) + Y, Yp{(h, +X,)
— (hp+Xp) +2cost cosy[(hﬂ+Xﬁ) sec (0+u) — (h,+X,) sec (0 —u)]}. (31)

The remaining equation needed to determine X,, Xy, ¥, and ¥, can be obtained from
equation (29) and the entropy distribution on the shock wave. However, as this is not known
until the flow is determined the equation cannot be written down in a convenient explicit
form.

Then, in principle, the correction functions may be determined from the entropy dis-
tribution equation and equations (25), (26) and (31) subject to the boundary conditions
appropriate to a given problem. Thus upstream of the shock the flow is homentropic and
independent of the shock shape, so that the correction functions vanish identically there.
The upstream branch of the shock is thus governed by the same equation,

dg, h, (o, ) sin (0 —p,)
day = Byl ) sim (0 4)’ (52)

as in the homentropic theory. Moreover, in the region downstream bounded by the stream-
line and the plus Mach line through the birth-point of the shock the flow is homentropic,
and hence ¥, and Y, vanish there. By continuity X; must vanish on this plus Mach line and
(X,+Y,) and (X;+Y,) must be continuous across this streamline. The final boundary
condition needed is that on the downstream side of the shock which may be expressed in
either of two forms, both of which will be useful in later work. The first, which is analogous
to equation (32), is

dfy _ _ (hy+X,)sin (0—py—0) + X, sin (0, +p) cos (0,4 0)
da, (hg-+Xg)sin (0 +py—0) + Ypsin (0, —p,) cos (0, +w)’

the differential equation for the downstream branch of the shock. The second can be
obtained by integrating the mapping relations (23) and (24) along a contour which lies
always in the real flow and making use of the fact that («,,#,) and (s, #,) correspond to the
same point in the flow plane. Thus it follows that

[ thucos (01 = [ Thpes 00 [ Lkt Xo) o8 041 (39)

and

2} L2 . . oy .
7 hasin 040150 = [ hpsin (0=, 9+ [0 +-X+ s (0] (35)

(33)

In attempting to solve this problem a solution will be sought in which | X, /4, |, | Xy/hs |
| Y, /k, | and | Yy/hs| are all small compared with unity—that is, a solution in which the
homentropic theory gives a reasonable approximation to the velocity gradients. The
leading terms of such a solution will be found, and this will permit an estimate of the errors
involved in a homentropic theory. When these ratios are small, it follows from equation (31)

that Y, cosec 2(0+p) +Y, cosec 2(0 —p) = o(¥,),
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and so Y, +o(Y,) = —sin2(0 —u) cosec 2(0+u) ¥,
= o(hy). (36)

Thus the leading order terms of equations (32) and (33) are just those of the homentropic
theory, and so the leading term for the shock of the solution sought will be the same as given
by the homentropic theory. This establishes the orders of magnitude of the variations of
all flow quantities, and these can now be used to estimate the contribution of any term.

To simplify the analysis the origin in the hodograph plane will be shifted to the birth-
point of the shock. With the established orders of magnitude it is possible to show that the
equation to the streamlines is

a—ay = —{moayf —gaf*} {1 +0(1)},

and, as the entropy is convected along the streamlines and has the value Ao} on the shock, *
the entropy distribution is given by

D(a, f) = Mo—pB(§ap*—mya,) }E {1 +o(1)}.

From equation (36) and the relations between Y,, Y, and the entropy gradients it follows that

Y, = const.hyle— A3 — my) P 1 +o(1)}
and Y, = const. ko —p(kaf?—myaz)} {14-0(1)},

so that both vanish on the streamline through the origin. Hence X, and X} are continuous
across this line and the equations (25) and (26) yield the solution

X = cos (0+p) sin (0 —p) cosec 2uYy+ O (h, %)
and X, = cos (6 —p) sin (0— p) cosec 2uYy/hy+-const. ket + O(h,a),

where the constant in the last equation could be determined from equations (34) and (35)
and the third-order shock conditions.

Thus it has proved possible to find the leading terms of a solution which does satisfy all
the necessary equations as well as the condition that the four ratios | X, /A, |, | X, slhgls | Yaltty |
and | Yy/hs | are all small. It will be assumed that this is the appropriate physical solution
to the problem, and it is now possible to use the solution obtained for the correction functions
to estimate the errors involved in a homentropic theory. It is immediately apparent that
the use of #, instead of (%, + X,) downstream will involve a comparatively large proportional
error of O(d). As such terms would be required to compute the second-order terms in any
succeeding shock, it follows that any downstream shock can only be determined to the
first order by a homentropic theory. If equations (34) and (35) are combined in the same
way as in the derivation of equation (6), then it can be shown that the correction functions
contribute at most terms O(%,8%). As such terms do not influence the second-order terms in
the determination of the shock shape by homentropic theory, the terms so determined must
agree with the solution of the full equations. This is so only because the largest order error,
that involving X, cancels during the determination. Moreover, for this solution it can be
shown that at any point in the flow field the errors in the velocity field as predicted by the
simple solution is of the same order as the entropy variations. Note that this approach

* Where A is a parameter determined by the shock jump conditions and the geometry of the shock.
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achieves similar results as obtained by Lighthill by a different method for a somewhat
different problem. It would therefore seem probable that the use of the homentropic
solution will be valid for a wide range of problems.

In conclusion, the author would like to express his gratitude to Professor M. J. Lighthill,
F.R.S., for his encouragement and to Dr R. E. Meyer for his helpful criticism during the
preparation of this paper. The author is also indebted to the Australian Department of
Supply for a generous grant which permitted him to study at Manchester University.
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